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In this Comment, we point out that the Euler-Lagrange equations, which are referred to as the general
equilibrium shape equations presented by Zhang et al. �Phys. Rev. E 70, 051902 �2004�� are incorrect, along
with equations derived from them. The correct equations are provided here and they are cross-checked using
certain energy functions previously presented in the literature. Further, with the use of the correct equations, we
present new numerical results, which for the values of the constants given by Zhang et al. do not give rise to
the physical behavior observed for DNA by those authors. However, the correct equations can be consistent
with sensible behavior for different values of the constants.
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To determine the shape of polymer chains, such as pro-
teins and DNA, Zhang et al. �1� adopt a variational principle
for an energy density, and obtain in �1� the Euler-Lagrange
equations, which are referred to as general equilibrium shape
equations. Here, we point out that these equations are incor-
rect, and we state the correct version of these equations and
those equations derived from them.

For the free energy density F=F(��s� ,��s� ,���s�), which
is a function of the curvature ��s�, the torsion ��s�, and the
derivative of the curvature, ���s�=d��s� /ds, where s is the
arclength of the polymer chain, the correct Euler-Lagrange
equations are derived by Thamwattana et al. �2�, and in a
comparable form to those presented by Zhang et al. �1�, are
given by
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where F1�=�F /��, F2�=�F /��, and F3�=�F /���. We note
that, for convenience, we adopt the same notation as that in
�1�, except that here we use only ��=d� /ds and ��=d� /ds,
whereas Zhang et al. �1� use both �� and �s to denote d� /ds
and �� and �s to represent d� /ds. The incorrect Euler-
Lagrange equations given by Zhang et al. �1� originate from
Eqs. �2.27� and �2.29� in �1� which are incorrect, and this
therefore leads to the mistakes in the Euler-Lagrange equa-
tions �2.31� and �2.32� as given in �1�. We comment that the
incorrect Eq. �2.27� in Zhang et al. �1� is also employed in
another paper by some of the same authors �Zhao et al. �3��.

We refer to Eqs. �B6� and �B7� in Appendix B of Thamwat-
tana et al. �2� for the correct versions of Eqs. �2.27� and
�2.29�, respectively.

As also shown by Thamwattana et al. �2�, Eqs. �1� and �2�
can be simplified to yield
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In Thamwattana et al. �2�, the Euler-Lagrange equations are
presented for the more general case F=F�� ,� ,�� ,���. We
note that the case of F=F��� has been investigated previ-
ously by Feoli et al. �4�. By substituting F=F��� into Eqs.
�1� and �2�, the Euler-Lagrange equations reduce to
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respectively, which are as shown in �4�. We point out that
using Eq. �2.32� in Zhang et al. �1� will not result in the
second of equations �5�, even though they state it correctly in
Eq. �3.2� of �1�.

For a particular energy density given by
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Zhang et al. �1� claim that substitution of Eq. �6� into their
general equilibrium shape equations, which are Eqs. �2.31�
and �2.32� in �1�, yields the two resultant equations presented
by Wei et al. �5�, namely,
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+ 6���� + C�3�5 − 4�3�2 + 24���2 + 12�2���
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This claim is not true, or in other words use of the two
general equilibrium shape equations of Zhang et al. �1� does
not give rise to Eqs. �7� and �8�. By using the correct Eqs. �3�
and �4� provided here, we confirm that by substituting Eq.
�6� into Eqs. �3� and �4� we obtain Eqs. �7� and �8� exactly.
We note that the constants A, C, −� /2, and � used in �1�
correspond, respectively, to the elastic moduli k2, k22, k3, and
k4 shown in �5�.

We may further check the two Euler-Lagrange equations
Eqs. �3� and �4� by considering the well-known Sadowsky
functional �6–8�, which has the form

F��,�� = �2�1 + �2�2, �9�

where �=� /�. We note that the Sadowsky energy function is
used to determine the shape of a narrow thin elastic band,
such as Möbius strips �6–8�. Upon substituting Eq. �9� into
Eq. �4�, we obtain
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which is exactly Eq. �4� in Hangan and Murea �7�. Next, we
substitute Eq. �9� into Eq. �3� and obtain
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By differentiating Eq. �11� with respect to the arclength pa-
rameter s, we deduce
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Now we introduce the quantities

a =
1

2��1 + �2�
, b = −

�

�1 + �2�
, c = −

��

2�2�1 + �2�
,

and it can be shown that the linear combination a� �12�+b
�Eq. �10� +c�Eq. �11� gives rise to
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which is precisely Eq. �3� stated in Hangan and Murea �7�.
For the energy density F of the wormlike chain �WLC�

model studied in �1�, which depends only on the curvature �,
namely

F��� = �2 + � , �14�

where � is a constant representing external forces or con-
straints, we find from Eq. �5� that we also obtain Eq. �3.7�
shown in �1�, given by

2�� + �3 − �� − 2��2 = 0, C = 4�2� , �15�

where C denotes an arbitrary constant. Thus, for a coiled
polymer chain which has the curvature and torsion given by
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h
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where r0 is the helical coiled radius and h= p / �2	�, where p
is the helical pitch, we deduce from Eq. �15� that

r0
2 − 2h2 − ��r0

2 + h2�2 = 0, C =
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2h

�r0
2 + h2�3 . �17�

We note that the first of equations �17� is in agreement with
Eq. �3.10� in �1�. In the case of �=0, we have from the first
of equations �17� that r0=�2h, which then gives rise to C
=8 / �27h3�. Since p=2	h, therefore p /r0=�2	�4.443.
Comparing this to the values for A-, B- and Z-DNA shown in
Table I, we see that the WLC model with no external force or
constraint applied gives a crude approximation to only the
DNA of Z form.

In Zhang et al. �1�, the free energy density for the worm-
like rod chain �WLRC� model is also examined, which is
given by

TABLE I. Helical pitch p and coil radius r0 of A-, B-, and
Z-DNA �Dickerson et al. �9� and Bates and Maxwell �10��, and
�0=2	 / p and the relations between p and r0 and r0 and h for each
type of DNA.

DNA p �nm� r0 �nm� �0 �nm−1� p /r0 r0 /h

A-DNA 2.46 1.3 2.55 1.89 3.32

B-DNA 3.32 1.0 1.89 3.32 1.89

Z-DNA 4.56 0.9 1.38 5.07 1.24
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where A is the bending rigidity, C is the twist rigidity, and �0
denotes the spontaneous twist of the helix given by �0
=2	 / p, where p is the helical pitch. Since the general equi-
librium shape equations �2.31� and �2.32� shown in Zhang et
al. �1� are incorrect, Eqs. �3.13�–�3.15� in �1�, which result
from substituting �18� into Eqs. �2.31� and �2.32�, are also
incorrect. Here, we derive the correct equilibrium shape
equations corresponding to the energy density �18� by using
the correct Euler-Lagrange equations �3� and �4�. From Eqs.
�3�, �4�, and �18�, we obtain

A�5 − �3��2A − 3C��2 + 2C�0� + C�0
2� + 2A�2�� − 4C�����

+ 2C��2��� + ��2� = 0, �19�

�A − C��4�� + �3����2A − C�� + C�0� + C�2��2�� − ���

+ C��2���� + ����� − 2C��2�� = 0. �20�

Thus, for a coiled polymer chain which has the curvature and
torsion given by Eq. �16� we deduce from Eqs. �19� and �20�
the following relationship for r0 and h:

�2A − 3C�h2 − Ar0
2 + 2C�0h�r0

2 + h2� + C�0
2�r0

2 + h2�2 = 0.

�21�

We observe that two of the terms involving the constant C
differ from those given in �1�. For the given values of A and
C in �1� �A=50 nm and C=1.5A� and using �0
=1.89 nm−1 from Table I for B-DNA, as shown in Fig. 1 Eq.
�21� gives a completely different physical behavior from that
indicated in �1�. Upon comparing Eq. �21� with the behavior
of B-DNA, it is very clear that, with these given constants,
the WLRC model is not suitable for describing the properties
of B-DNA. Furthermore, on using A=50 nm and C=1.5A

but changing the values of �0 for different DNA �see Table
I�, we obtain a similar behavior to that of Eq. �21�, which is
shown by the solid line of Fig. 1. Thus, we may conclude
that the WLRC model with the present constants cannot be
used to describe the properties of DNA. However, using val-
ues of the constants where C is much smaller than A, such as
A=75 nm and C=0.1 nm, the correct equation may be used
to predict the physical behavior of DNA. In fact, when C is
much smaller than A, the behavior of Eq. �21� approaches
that of r0=�2h, which is the case for the WLC model that
can be used to approximate the physical behavior of Z-DNA
�see Fig. 2�.

Next, if we ignore the terms �0 in Eq. �18� for which the
energy density for the WLRC model reduces to

F��,�� =
A

2
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2
�2, �22�

then from Eq. �21� we may obtain

�2A − 3C�h2 − Ar0
2 = 0,

which gives rise to

r0

h
=��2A − 3C�

A
,

assuming that A is greater than zero. Thus, for this model to
be sensible, we need the condition that the values of A and C
are such that 2A−3C
0 and, since both A and C are posi-
tive, we have 0�C /A�2 /3. Furthermore, by prescribing

=r0 /h, we have

C

A
=

�2 − 
2�
3

. �23�

Upon substituting the values of 
=r0 /h for A-, B-, and
Z-DNA, which are given in Table I, into Eq. �23�, we find

FIG. 1. Relation between the coil radius r0 and h, where h
= p / �2	�. The solid line is the WLRC model for B-DNA and the
dashed line is the relation of r0 and h for B-DNA from Table I.

FIG. 2. Relation between the coil radius r0 and h for A-, B-, and
Z-DNA from Table I, compared with the limiting case r0=�2h of
Eq. �21�.
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that C /A=−3.007, −0.524, and 0.154 for A-, B-, and
Z-DNA, respectively. Therefore, we may conclude that the
functional form �22� is appropriate only for describing the
free energy density of Z-DNA, particularly when A and C
satisfy C /A=0.154.

Further, Zhang et al. �1� also consider the solutions for
helical biopolymers by substituting Eq. �16� into Eqs. �7� and
�8� �which are Eqs. �4.2� and �4.3� in �1��. We find that Eq.
�4.4� in Zhang et al. �1� is incorrect. The correct equation is
given by

Cr0
2�4h2 − 3r0

2� + 2A�2h6 + 3r0
2h4 − r0

6�

− 2�h�2h4 − r0
2h2 − 3r0

4� + 2�h2�2h2 − 5r0
2� + 4��r0

2 + h2�4

= 0. �24�

For the case of no external force or constraint ��=0� and for
particular values of the constants, namely, A=50 nm, C
=60 nm2, �=40 nm3, and �=50 nm2, used in �1�, we plot
Eq. �24� �the solid line� showing the relation between r0 and
h in Fig. 3, together with the values of A-, B- and Z-DNA.
Again, it is clear from Fig. 3 that with the given constants the
above model does not describe the properties of any form of
DNA, contradicting the claim made by Zhang et al. �1� that
this model can be used for B-DNA. However, one might
argue that, by choosing a set of appropriate constants, it may
be possible to use this model to describe the features of
DNA. For example, choosing A=10 nm, C=60 nm2, �
=1 nm3, and �=1 nm2, we find from Fig. 4 that Eq. �24�
agrees well with the behavior of Z-DNA. For A=50 nm, C
=20 nm2, �=40 nm3, and �=10 nm2, Fig. 4 also shows

reasonable agreement between the behavior of Eq. �24� and
that of B-DNA.

In summary, this Comment provides the correct Euler-
Lagrange equations �3� and �4� which are cross-checked us-
ing certain energy functionals for which the resultant Euler-
Lagrange equations have been given previously in the
literature. We point out that Eqs. �2.27� and �2.29� in Zhang
et al. �1� are incorrect, leading therefore to the incorrect
Euler-Lagrange equations, namely �2.31� and �2.32� in �1�.
We comment that since Eqs. �2.31� and �2.32� in Zhang et al.
�1� are incorrect, all those results in �1� that are based on
these equations are also incorrect. The correct results are
provided here, and we find that for the numerical values of
the constants given in �1� the WLRC model does not agree
with the behavior of any form of DNA. We find that the free
energy density, which arises from setting �0=0 in the WLRC
model, can be used to describe the physical behavior of
Z-DNA when the constants A and C involved are chosen to
satisfy C /A=0.154. For the energy density model proposed
by Wei et al. �5�, we discover that Eq. �4.4� in �1� is also
incorrect. Again we give the correct equation here, namely,
Eq. �24� and we also present new numerical results. With the
numerical values of the constants used in Zhang et al. �1� we
do not find any agreement between the behavior of the model
based on �5� and any form of DNA. However, Eq. �24� may
still be used for DNA, if appropriate numerical values of the
constants are taken. Finally, although the WLC model with
no external force or constraint can be used as a crude ap-
proximation, we do not find that it agrees well with Z-DNA
as suggested in �1�.

The authors are grateful to the Australian Research Coun-
cil for support through the Discovery Project Grant .

FIG. 3. Relation between the coil radius r0 and h. The solid line
is obtained from Eq. �24�, which is based on the model proposed by
�5�; the dashed, dotted, and dash-dotted lines, respectively, repre-
sent the relations of r0 and h for A-, B-, and Z-DNA from Table I.

FIG. 4. Comparison between the behavior of B- and Z-DNA and
Eq. �24� for two different sets of constants.
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